当前位置:主页 > 行业资讯 > BI看板 >

大数据可视化分析怎么做,目的是什么?

发布时间:2023-09-14 20:11   浏览次数:次   作者:admin

数据可视化是个热门话题,在信息安全领域,也由于很多企业希望将大数据转化为信息可视化呈现的各种形式,以便获得更深的洞察力、更好的决策力以及更强的自动化处理能力,数据可视化已经成为网络安全技术的一个重要趋势。

一、数据分析与数据可视化
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
而数据可视化,是关于数据视觉表现形式的科学技术研究。其主要目的是借助图形手段,清晰、有效地进行传达与沟通信息,其中,数据的可视化表示被定义为一种以某种形式提取的信息,包括相应信息单元的各种属性和变量。
二、做数据可视化分析的目的是什么?
1、分析现状
分析现状是我们数据分析的基本目的,我们需要明确当前市场环境下,我们的产品市场占有率是多少,注册用户的来源有哪些,注册转化率是多少,购买转化率是多少,竞品是什么,竞品的发展现状如何。我们和竞争对手相对,优势有哪些,不足又有哪些等等,都是属于对于现状的分析。这里包括两方面的内容,分析自己的现状和分析竞争对手的现状。
2、分析原因
分析原因是数据运营者用得比较多的了,做运营的人,在具体的业务中,不光要知道怎么了,还需要知道为什么如此。在业务上,我们经常会遇到某天用户突然很活跃,有时用户突然大量流失等,每一个变化都是有原因的,我们要做的就是找出这个原因,并给出解决办法,这些就是分析原因。
3、预测未来
数据分析的第三个目的就是预测未来,所谓未雨绸缪,用数据分析的方法预测未来产品的变化趋势,对于产品的运营者来说至关重要。
三、数据可视化分析四大误区
1)目的不明确,为了做而作,导致分析效果不明确;
2)对与行业、公司业务还有其他考虑因素认知不清楚,分析结果偏离实际。数据必须要结合企业业务和行业性质才有意义。摸清楚所在产业链的整个结构,对行业的上游和下游的经营情况有大致的了解,再根据业务当前的需要,制定发展计划,归类出需要整理的数据。同时,熟悉业务才能看到数据背后隐藏的信息;
3)为了方法而方法,为了工具而工具,只要能解决问题的方法和工具就是好的方法和工具;
4)数据本身是客观的,但被解读出来的数据是主观的。同样的数据由不同的人分析很可能得出完全相反的结论,所以一定不能提前带着观点去分析。
四、如何做数据可视化分析?
1、明确目的和思路
首先明白数据分析的目的,梳理分析思路,并搭建整体分析框架,把分析目的分解,化为若干的点,清晰明了,即分析的目的,用户什么样的,如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标(各类分析指标需合理搭配使用)。同时,确保分析框架的体系化和逻辑性。
2、数据收集
根据数据分析的目的和需求,对数据分析的整体流程梳理,找到自己的数据源,进行数据分析,一般数据来源于四种方式:数据库、第三方数据统计工具、专业的调研机构的统计年鉴或报告(如艾瑞资讯)、市场调查。
3、数据处理
数据收集就会有各种各样的数据,有些是有效的有些是无用的,这时候我们就要根据目的,对数据进行处理,处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法,将各种原始数据加工成为产品经理需要的直观的可看数据。
4、数据分析
数据处理好之后,就要进行数据分析,数据分析是用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。要侧重解决四类数据分析问题:分类、聚类、关联和预测,重点在寻找模式与规律。
5、数据展现
一般情况下,数据是通过表格和图形的方式来呈现的。常用的数据图表包括饼图、柱形图、条形图、折线图、气泡图、散点图、雷达图等。
6、报告撰写
撰写报告一定要图文结合,清晰明了,框架一定要清楚,能够让阅读者读懂才行。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。