数据安全治理体系框架和实践路线
发布时间:2024-08-07 19:29 浏览次数:次 作者:admin
01 数据安全治理背景
随着各行各业信息化不断演变发展,数据已成为基础设施,成为业务发展重要原动力,内部业务与互联网深度融合,利用新媒体,让数据产生更大价值,是近近几年发展的主要趋势。如何提升数据资产价值同时让数据使用更安全,已成为各个行业探讨的方向。近几年网络安全事件频发,具有商业特性的攻击事件越来越多,地下黑产对个人信息需求异常旺盛。2017-2018年度551起数据泄露事件中,出自各行各业,数据高质量、易获取,已成为不法份子获取利益的最佳途径。随着横向网络安全法、等保2.0的合规性要求及纵向垂直行业安全要求的需要,对数据存储、使用、运营提出了明确要求,如何更好的对数据进行有效防护,保障数据全生命周期的安全性,如何以事前发现、事中阻止、事后审计、持续加固的方式,提供更好的服务是每个从事安全的行业人员应该深度思考的问题。
02 数据安全治理概念
根据《数据安全治理白皮书3.0》,数据安全治理是以“让数据使用更安全”为目的,在中国易于落地的数据安全建设的体系化方法论,核心内容包括:
(1)满足数据安全保护(Protection )、合规性(Compliance)、敏感数据管理(Sensitive) 三个需求目标;
(2)核心理念包括:分类分级(Classfiying)、角色授权(Privilege)、场景化安全 (Scene);
(3)数据安全治理的建设步骤包括:组织构建、资产梳理、策略制定、过程控制、行为稽核和持续改善;
(4)核心实现框架为数据安全人员组织(Person)、数据安全使用的策略和流程 (Policy&Process)、数据安全技术支撑(Technology)三大部分。
数据安全治理的核心理念:
•分类分级
数据资产保护的核心在于数据分类分级。
通过对数据的有效理解和分析,对数据进行不同类别和密级的划分;根据数据的类别和密级制定不同的管理和使用原则,尽可能对数据做到有差别和针对性的防护,实现在适当安 全保护下的数据自由流动。
参考:12张图解析数据安全分类分级
•角色授权
数据安全访问控制核心在于数据访问主体的角色授权。
在数据分级和分类后,明确了数据的访问角色以及数据的使用方式,在不影响数据资源正常访问的前提下,针对不同的角色赋予不同的访问权限,实现数据的访问和使用安全。
•场景化安全
数据安全治理的核心在于场景化安全。
不同用户基于业务、访问途径、使用需求,会产生不同的使用场景。在保证数据被正常 使用的目标下,基于不同的使用场景制定相应的数据安全策略。场景化的数据安全治理,能及时发现数据风险暴露面,使数据安全治理更具针对性,从而实现数据使用更安全。
03 数据安全治理目标数据安全治理长期目标思短期目标需要从治理体系、安全合规、技术支撑三要素进行考虑建设。治理体系:数据安全体系化建设,使数据安全管理更加合理规范,良好的可视性运维机制和动态协同能力。安全合规:充分了解合规及行业要求,建设满足合规性要求同时,需要考虑灵活性、可扩展性及各阶段衔接性。技术支持:提升事前发现、事中防护、事后审计能力。04 数据安全治理体系框架数据安全是数据安全治理的目标对象,参考框架是数据安全治理的参照对象。组织可以通过持续构建参照对象,实现对目标对象的有效管理。依据团体标准T/ISC-0011-2021《数据安全治理能力评估方法》,数据案例参考框架包括数据安全战略、数据全生命周期安全、基础安全3部分主要内容,如下图所示。
数据安全治理参考框架
•数据安全战略
在组织启动数据安全治理工作前,必须制定相应的战略规划,明确治理目标和具体任务,匹配对应的资源,使得治理工作能够有条不紊地展开。数据安全战略可以从数据安全规划、机构人员管理两个能力项入手,前者确立目标任务,后者组建治理团队。
•数据全生命周期安全
数据安全治理应围绕数据全生命周期展开,以采集、传输、存储、使用、共享、销毁各个环节为切入点,设置相应的管控点和管理流程,以便于在不同的业务场景中进行组合复用。数据全生命周期安全包括数据采集安全、数据传输安全、存储安全、数据备份与恢复、使用安全、数据处理环境安全、数据内部共享安全、数据外部共享安全、数据销毁安全在内的9个能力项,通过对数据全流转过程进行规范和约束以有效降低数据安全风险。
•基础安全
基础安全能力作为数据全生命周期安全能力建设的基本支撑,可以在多个生命周期环节内复用,是整个数据安全治理体系建设的通用要求,能够实现建设资源的有效整合。基础安全能力包括数据分类分级、合规管理、合作方管理、监控审计、鉴别与访问、风险和需求分析、安全事件应急等7个能力项,主要从数据安全的保障措施上进行定义和要求。对行业数据特性及数据管理现存问题,从数据视角出发,系统化、规范化、科学性的建立数据安全治理体系。完整的数据安全治理体系应包含5个方面:原则、上层建筑、资产梳理、管理体系、防护体系。
安全治理体系
原则是数据安全治理的基本思想与方针,包括:战略一致、风险可控、运营合规、绩效提升。上层建筑包括内外部策略、部门职责、动态协同等,起到安全治理过程中依据、指引等作用。资产梳理是以安全治理角度,充分摸清家底,有针对性、有计划性的进行治理实施,主要包括:管理梳理、技术梳理、场景梳理。管理体系具有可落地执行特性,包含组织体系、执行体系及运维体系。技术体系通过发现、运维、防护,实现各阶段进行快速响应。
数据安全治理框架
05 数据安全治理实践路线
参考中国信通院发布发布的《数据安全治理实践指南(1.0)》,给出了数据安全治理的实践路线:(一) 第一步:治理规划(二) 第二步:治理建设(三) 第三步:治理运营(四) 第四步:治理成效评估
第一步就是要进行治理规划,它是数据安全治理工作能够有条不紊的开展的前提,可以按照现状分析、方案规划、方案论证的环节顺序推进。
明晰的组织体系是保障数据安全工作顺利开展的首要条件,可以参考上图所示内容进行建设。其中,决策层是统筹部门,可以采取“一把手负责制”,管理层是数据安全工作的管理团队,执行层是数据安全工作的具体执行者和参与者,监督层负责对管理层和执行层的工作进行监督,对违规行为予以纠正。
制度流程作为数据安全防护要求、管理策略、操作规程等的集合,一般会从业务数据安全需求、数据安全风险控制需要、法律法规合规性要求等几个方面进行梳理。相关制度文件的制定可以参考上图所示的四个层级。
技术工具作为落实各项安全管理要求的有效手段,是支撑数据安全治理体系建设的能力底座。可以参考上图中的技术框架,完善各项技术工具以及产品平台的功能项,确保数据安全技术能力的具体落实。
数据安全治理离不开相应人员的具体执行,因此,加强对数据安全人才的培养是数据安全治理的应有之义。可以从数据安全意识提升、数据安全能力培训、数据安全能力考核三方面进行培养。
数据安全治理的持续运营,能够打通各环节的建设内容,促进整个体系的良性发展。治理运营分为三个方面,一是风险防范,二是监控预警,三是应急处理。
06 数据安全治理实施过程中注意事项合规性要求。行业合规性要求较多,会随着时间推移发生变动,合规性文件对数据安全治理过程中有着依据、指引等作用,如不能深入了解,会使数据安全治理建设过程反复。管理体系。完善可持续性的管理体系是保障安全治理的先决条件,规划好,落地难的管理体系如空中楼阁,使数据安全治理效果大大折扣。资产梳理。资产梳理对数据安全治理尤为重要,需要清除哪些数据要防护、数据如何流转、端到端对象都有谁、数据跑的有什么内容、现今数据载体有什么安全隐患等等问题,资产梳理不到位,难以进行后期的体系建设。缺乏过程持续性。数据安全治理是一个持续性过程,上到管理体系,下至技术工具,都需进行持续性完善,如治理过程缺乏持续性,则无法形成运维监控、定向审计、问题处置与体系加固等一套有效的运转机制。
数据安全治理流程
07 总结
大数据、云计算、物联网、人工智能的到来,让各个行业发生巨大的改变,各行业对数据数据整合及利用,以互联网进为载体行服务模式转变同时,应充分考虑对数据的安全治理。通过对人、管理、防护产品多个方面进行数据安全治理意识、制度、技术的持续性完善,实现安全、业务与数据有效融合,达到数据安全治理的预期效果。
(部分内容来源网络,如有侵权请联系删除)